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Thermal lattice Boltzmann simulations are prone to severe numerical instabili-
ties. While octagonal velocity lattices increase the range of temperatures that
can be successfully simulated, the ranges are insufficient for many applications.
Second order interpolation is required to correlate diagonal streaming to the
square spatial grid. Here, the role of energy-dependent octagonal lattices is
examined, an idea spawned from Gauss–Hermite quadratures. A nontrivial
allocation scheme is now required to ensure moment conservation in connecting
to the spatial grid. For the energy-dependent lattices, it is shown that there are
no lower bounds to the temperature, thus allowing for higher Reynolds number
simulations. Simulations are presented and compared to theory (viscosity and
sound speed dependence on temperature) showing excellent agreement.

KEY WORDS: Thermal lattice Boltzmann; octagonal lattices; simulations; jet
turbulence.

1. INTRODUCTION

Lattice Boltzmann algorithms are an ideal mesoscopic approach to solving
nonlinear macroscopic conservation equations because of their simplicity
and ease of parallelization for multi-PE computers. In particular, lattice
Boltzmann models (LBM) completely avoid the nonlinear Riemann
problem that plague conventional computational fluid dynamics (CFD),
and whose accurate resolution can take up over 30% of the total CPU.



LBM avoids the nonlinear Riemann problem by moving to kinetic phase
space and solving the simple linear BGK kinetic equation

“f
“t
+t ·Nf=−

1
y
[f−feq] (1)

where feq is the relaxation (Maxwellian) distribution function

feq=
n
2pe

exp 5−(t−u)2

2e
6 (2)

n is the number density, u the mean velocity and e is the temperature. y controls
the rate at which f(x, t, t) relaxes to feq. The nonlinear convective deriva-
tives in CFD are now replaced by simple streaming in kinetic phase space.
The price paid by LBM in avoiding the nonlinear Riemann problem is the
increased dimensionality of phase space. For example, in two dimensional
(2D) flows (and for simplicity we shall restrict all considerations to 2D
flows), the phase space increases for 2 space+time Q 2 space+2 kinetic
velocity+time. For fluid flows, particularly in the highly collisional regime,
this seems a step backwards in solvability—an inverse statistical mechani-
cal approach. However, what saves the day for LBM is the discretization
algorithm in kinetic velocity space. Indeed, a minimal number of discrete
velocities are chosen such that under Chapman–Enskog expansions, the
discretized LBM reduces to the original nonlinear macroscopic conserva-
tion equations. The choice of lattice symmetry plays a vital role, not only in
decreasing storage requirements but also in determining the range of values
in (n, u, e) for which one will achieve numerical stability.

Under discretization, the BGK kinetic equation (1), in LBM units,
becomes

Nk(x+ck, t+1)−Nk(x, t)=−
1
y
[Nk(x, t)−N

eq
k (x, t)] (3)

where ck is the lattice velocity vector and the number of discrete velocities
is b: k=1,..., b. To stress the velocity discretization, we change our nota-
tion for the distribution function: f(x, t, t)QNk(x, t). Because we have
reduced the velocity phase space symmetry from continuous rotational
symmetry to that of the discrete lattice, Nk cannot take the form of a
discretized local Maxwellian. As a result, one no longer has an H-theorem
and the positive-definiteness of Nk with time cannot be ensured. The
achievable solution domain in (n, u, e)-space will thus be dependent on the
choice of the lattice symmetry as well as on the form of Neq.
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For incompressible flows the LBM, Eq. (3) has achieved excellent
success, (1–4) while straightforward models (5–12) employing closure at the
energy moment level have struggled with numerical instabilities and the
non-positive definiteness of Nk. There are two basic attempts that have
been taken to combat this problem: (a) more general formulations (13–15)

involving Neqk , or (b) introduce higher discrete isotropic lattices. (16, 17) In this
paper, we continue with our exploration of using higher isotropy
lattices—lattices which will no longer be space-filling.

In Section 2, we shall review the role of octagonal lattices in 2D (their
3D generalization has been presented in ref. 17), and then present the case
for using energy-dependent octagonal lattices. Since this is new ground,
we present some preliminary simulations for 2D jet flow between plane
boundaries held at constant temperature. These results are presented in
Section 4, with a brief summary in Section 5.

2. OCTAGONAL LATTICES

Most thermal LBM have worked with either the square or hexagonal
velocity lattice, since these are space-filling and allow for the overlay of the
velocity lattice onto the spatial grid. For thermal LBM, the mean variables
are defined by the discretized moments of Neqk :

n(x, t)=C
k
Neqk (4)

n(x, t) u(x, t)=C
k
Neqk ck (5)

n(x, t) e(x, t)+12 n(x, t) u2(x, t)=1
2 C
k
Neqk c2k (6)

with the relaxation distribution function having a series representation in
powers of u/cs, where cs is the sound speed:

Neq0=n[A0(e)+C0(e) u2+·· · ] (7)

for the rest particles, and

Neqk=n[A1(e)+B1(e)(ck ·u)+C1(e) u2+D1(e)(ck ·u)2+·· · ] (8)

for particles moving with velocity ck. The expansion coefficients A0, C0,...,
A1,... . are determined from (4)–(6) and to remove any discrete lattice
effects that might appear in the long wavelength, long time Chapman–
Enskog limit—equations which should be nothing but the nonlinear
macroscopic conservation equations of interest.
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It is important to note that the truncation error O(up/cps ) in Neqk will
determine the level of moments that can be satisfied in the closure scheme.
For example, if the error terms are chosen to be of order u4/c4s , then one
will need to also satisfy the moment constraint (in component form)

C
k
Neqk ckackbckc=ne[uadbc+ubdca+ucdab]+nuaubuc (9)

This moment constraint is, of course, exactly satisfied in the continuum
limit by the Maxwellian distribution.

The greater the level of isotropy of the chosen discrete velocity lattice,
the less constraints are placed on the expansion coefficients in Neqk and the
greater the range of values in (n, u, e)-space that can be achieved by a
stable code. This can be readily seen by substituting Eqs. (7) and (8) into
the moments Eqs. (4)–(6), (9),... . After this substitution, one needs to
evaluate the nth-lattice vector moments:

Tna · · ·t=C
k
cka · · · ckt (10)

With 2D lattice vectors taking the form:

ck=(cos) ck=1cos
p(k−1)
K

, sin
p(k−1)
K
2 (11)

where k=1,..., K with

square lattice: K=4

hexagonal lattice: K=6

octagonal lattice: K=8

it can be readily shown that

T4abcd=k ·dabcd+f · (dabdcd+dacdbd+daddbc) (12)

T6abcdeq=Y ·dabcdeq+L · (dabdcdeq+c·p)+G(dabT
4
cdeq+c·p) (13)

where d. . . is the Kronecker tensor, with d. . .=1 if all the indices are equal
and d. . .=0 otherwise. Only the 2D tensor dab is isotropic. The coefficients
k, f, Y, L, h are dependent on the chosen lattice symmetry. Now for the
square lattice k ] 0, so that T4 is not isotropic. For the hexagonal lattice
k=0, but Y ] 0 so that the hexagonal symmetry leads to an isotropic T4,
but an anisotropic T6. However, for the octagonal lattice k=0=Y=L
so that the octagonal symmetry results in the 6th rank lattice vector
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moment T6 being isotropic. Once the level of closure is chosen, the level of
Tn-isotropy that is required is determined. Because of this requirement, if
the chosen lattice symmetry will not in itself satisfy this isotropy (e.g., the
square lattice), then the burden to ensure the required isotropy enforces
constraints on the expansion coefficients. Thus the octagonal lattice should
result in a more numerically stable algorithm.

Now for space-filling velocity lattices, in which the velocity lattice and
spatial grid overlay each other, the usual algorithm for solving Eq. (3) is:

(i) free-stream Nk(x)QNk(x+ck)

(ii) recompute the mean variables n, u, e by taking the appropriate
moments ofNk and thus update the relaxation distributionNeqk=N

eq
k (n; u; e),

(iii) collisional relaxation at each spatial grid node

Nk(x)−
1
y
[Nk(x)−N

eq
k (x)]QNk(x) at time t+1

Let us now consider the choice of the non-space filling octagonal velocity
lattice. (16) It is convenient to take a square spatial grid. However for the
octagonal lattice the streaming in the diagonal directions results in spatial
positions x+ck, k=2, 4, 6, 8 which do not coincide with the square grid
nodes. As a result, we must introduce a further step in the LBM algorithm:

(iŒ) second order interpolation in the diagonal directions.

The improvement in numerical stability of the higher isotropy octagonal
lattice can be immediately seen in Table I, in which we present the stable
temperature range at a relaxation decay rate y=0.504.

While the results (16, 17) for an octagonal lattice are encouraging, the
allowed stable solution range in (n, u, e)-space is still too restrictive for
application to turbulence problems in the tokamak divertor region,

Table I. Parameter Regime in Temperature for Stable LBM at y=0.504. There Are

No Stable Temperature Range for Square Lattices, While for Hexagonal Lattices

There Are Two Very Narrow Disjoint Intervals. However, for Octogonal Lattices,

There Is a Continuous and Wide Stable Energy Range

y=0.504 Square Hexagonal Octogonal

Stability limits on the – 0.32 < e < 0.35 0.28 < e < 0.555
temperature e 0.49 < e < 0.505

Preliminary Results in the Use of Energy-Dependent Octagonal Lattices 503



a problem of considerable interest to us. (18–20) This has driven us to consider
energy-dependent octagonal lattices.

3. ENERGY-DEPENDENT OCTAGONAL LATTICES

The role of energy-dependent lattices becomes evident when extending
the Gaussian–Hermite quadrature technique from momentum closure (21) to
energy closure schemes. (17) The Gauss–Hermite method allows for the
determination of both the relaxation distribution function as well as the
velocity lattice itself. We now briefly review this approach. In the conti-
nuum velocity phase space, the relaxation distribution feq in the BGK
kinetic equation (1), is the Maxwellian (in 2D):

feq=
n
2pe

exp 5−(t−u)2

2e
6 (14)

Suppose a minimal Taylor expansion in the mean velocity is performed
on (14):

feq %
n
2pe

exp 5−t
2

2e
631+t ·u

e
−

u2

2e
+
(t ·u)2

2e2
−
(t ·u) u2

2e2
+
(t ·u)3

6e3
+O(u4)4

(15)

The moments n, nu, ne will be conserved if one can exactly evaluate the
moment integrals up to second order (in Cartesian coordinates)

F d2t feqtpxtqy for p+q [ 2 (16)

i.e., if one can exactly evaluate

F
.

−.
dz zm exp[−z2], m [ 5 with tx, y — (2e)1/2 z (17)

For a given M, Gaussian–Hermite quadratures yield the following integral
estimate

F
.

−.
dz h(z) exp[−z2]=C

M

p=1
wph(zp)+O(h(2M)(zg)) (18)

504 Pavlo et al.



where h(z) is an arbitrary function, and the error term is dependent on the
2Mth derivative of h(z). zp are the zeros of the Hermite polynomial HM,
with p=1,..., M

HM(zp)=0, p=1,..., M (19)

while the weight factor wp

wp=
2M+1M!`p

[HM+1(zp)]2
, p=1,..., M (20)

Hence we will have an exact representation for (17) for the choice M=3,
with nodal positions

t1=0, t2=`3e, t3=−`3e (21)

The corresponding phase space velocity lattice vectors are thus (in Cartesian
coordinates)

cij — (ti, tj)=cij(e), i, j=1, 2, 3 (22)

i.e., the 9-bit velocity lattice vectors form a temperature-dependent square
lattice.

We now report on some preliminary results using a 9-bit, 2D energy-
dependent octagonal lattice representation of the linear BGK kinetic equa-
tion. We have chosen to work with the octagonal lattice rather than the
square lattice since octagonal lattice symmetries have much better numeri-
cal stability (16) than that of the square (see also Table I). In this current
paper, we do not fully exploit this T6 isotropy of the octagonal lattice that
will permit the accurate representation of the 6th moment integrals in
Eq. (18). This would require multiple level of speeds (this is currently under
investigation and will be reported elsewhere). We introduce the lattice
vectors

c0=0; ck=c(e) ek, k=1,..., 8 (23)

where ek is an octagonal unit vector:

ek=1cos
p(k−1)
8

, sin
p(k−1)
8
2, k=1,..., 8 (24)

and c(e) is a scaling temperature-dependent parameter to be determined
later.
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The equilibrium distribution function is assumed to have the form

Neq0=n(A0(e)+C0(e) u2)

Neqk=n[A1(e)+B1(e)(ck ·u)+C1(e) u2+D1(e)(ck ·u)2], k=1,..., 8
(25)

for appropriately chosen coefficients A0(e),..., D1(e). On substituting
Eq. (25) into the definition of the mean density, mean velocity and internal
energy

n(x, t)=C
8

k=0
Neqk , n(x, t) u(x, t)=C

8

k=1
ckN

eq
k ,

2n(x, t) e(x, t)=C
8

k=1
c2kN

eq
k −nu

2

(26)

the octagonal symmetry constraints yield the following unique set of
temperature-dependent coefficients

A0=
1
2
, C0=−

1
c2(e)

,

A1=
1
16
, B1(e)=

1
4c2(e)

, C1(e)=−
1

8c2(e)
, D1(e)=

1
2c4(e)

(27)

and the temperature-dependent scaling factor

c(e)=`4e (28)

3.1. Implementation of the Energy-Dependent Algorithm

As usual, the lattice Boltzmann equation (3) is solved by splitting the
algorithm into free streaming and collisional relaxation at each spatial
node. However, now the free streaming is dependent on the temperature at
that particular spatial node, with the streaming distance |ck |=c(e) varying
from spatial node to spatial node since e=e(x, t). Of course, at each spatial
node the octagonal phase space symmetry is preserved (k=1,..., 8).

3.1.1. Free Streaming

In general, after the distributions Nk are streamed in the direction ek
(k=1,..., 8) by the distance c(e), their spatial locations will no longer
coincide with the spatial grid nodes. Moreover these spatial locations will,
throughout the spatial domain, be non-equidistant from the spatial grid
nodes because of the spatial dependence of the temperature. It is not
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straightforward to design an interpolation scheme that will conserve the
macroscopic moments (26) and yield the distributed values of the Nk’s onto
the given spatial grid. This is particularly true since the various off-grid
streamed Nk’s will have come from spatial nodes at different temperature.
This would then require further interpolations for the moments ;Nkck and
;Nkc2k with the strong likelihood of introduction significant numerical
viscosity.

Instead, we utilize an allocation algorithm for determining how some
function F(x+ck), following streaming, is to be distributed among the
neighboring spatial grid nodes x+aek , for some integer a. Although we
work here with the standard 2D square grid, this allocation scheme can be
readily extended to any non-uniform spatial grid.

Let La be the fraction of F(x+ck) that is to be allocated to the spatial
node x+aek for a given k. Normalizing over all the allocations,

C
a

La=1 (29)

Further, by allocating a portion La of F(x+ck) to the nodes x+aek, we
can, in fact, consider that one has streamed to the spatial node itself
x+aek, rather than to x+cek. However, to recover proper convection, one
must impose the constraints on the allocation factors La:

nu=C
k
Nkcek=C

k
Nk C

a

Laaek (30)

and

ne+12 nu
2=1

2 C
k
Nkc2=

1
2 C
k
Nk C

a

Laa
2 (31)

Thus, the allocation factors must satisfy

C
a

Laa=c(e), C
a

Laa
2=c2(e), C

a

La=1 (32)

Two possible stencils that satisfy (32) are:

#1: a=(−1, 0, 1) with L−1=
1
2 (a

2−a),

L1=
1
2 (a

2+a) and L0=1−L−1−L1
(33)

#2: a=0, 1, 2 with L1=2a−a2,

L2=
1
2 (a

2−a) and L0=1−L1−L2
(34)
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where

a=c(e) for k odd (i.e., for streaming along the axes)

a=
c(e)

`2
, for k even (i.e., for streaming along the diagonals)

(35)

Contributions to a particular spatial grid node will come from several
nearby nodes corresponding to different temperatures, i.e., different c(e).
Therefore, to ensure an exact conservation of the macroscopic moments,
not only must one stream the distributions Nk but also the corresponding
parts of the momentum and energy carried by the individual distributions,
i.e., one must also stream Nka and Nka2. These must be saved in arrays for
u and e so that the integration step is combined with the streaming.

3.1.2. Collision

From (3), the typical collision routine in lattice Boltzmann simulations
would be

11−1
y
2Nk(t)+

1
y
Neqk (t)QNk(t+1) (36)

in order to obtain the distribution function from time tQ t+1. However
the situation is a bit more complex for energy-dependent lattices. Since
c=c(e) is dependent on the particular spatial grid, (36) is replaced by

11−1
y
2Nk(t)+

1
y
Neqk (t)QNk(t+1) (37)

where the distributions Nk(t) are the distributions Nk(t) (before collision),
but renormalized to account for the new velocity lattice [because of the
new c(e)] used in determining Neqk , since the streaming step has been per-
formed first. Thus, Nk(t) are renormalized to satisfy the moment con-
straints

C
k
Nk=n, C

k
Nkc(e) ek=nu, C

k
Nkc2(e)=2ne+nu2 (38)

for the new values of n, u, c(e).

4. 2D JET FLOW SIMULATIONS BETWEEN WALLS HELD

AT CONSTANT TEMPERATURE

Before presenting results for 2D jet flow between constant temperature
walls, we first consider a numerical test of the energy-dependent lattice
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algorithm. We shall determine the temperature dependence of the viscosity
for plane Poiseuille flow and compare it to the theoretical (Chapman–
Enskog) result:

ntheor=e(y−
1
2) (39)

which is, of course, independent of the channel width. For the simulations,
we introduce a forcing term f on the left hand side of Eq. (2). For simple
Poiseuille flow, it is well known that the viscosity is related to the
momentum at the channel center

n=
L2

8u0
f (40)

where u0 is velocity at the channel center and L is the channel width. For a
given channel width and forcing, we determine the mean velocity at the
channel center from the simulations and hence the viscosity by Eq. (40).
These simulation results are shown in Figs. 1(a) and (b) for the allocation
scheme #1 and scheme #2. The open circles are the simulation results for a
channel width L=Ny=32, while the filled square are for a channel width
L=Ny=80. The full line, dashed line.... are the theoretical results from
Eq. (39). One finds very good agreement between theory and simulation
over a very wide range of temperatures. It is evident that there is some
deviation of our simulation results from theory for channel width L=
Ny=32—particularly as yQ 0.5+ for temperatures e < 10−2. Since our
algorithm no longer runs at a kinetic CFL=1, it is important to determine
if these deviations are induced by numerical viscosity introduced by our
streaming allocation algorithm. To test this, we have increased the channel
width to L=Ny=80 and the results are shown as filled squares in
Figs. 1(a) and (b). We find excellent agreement between theory and simu-
lation: e.g., for allocation scheme #1, with e=5×10−2 and y=0.52,
Eq. (39) yields ntheor=1.0000×10−4 while our simulation results Eq. (40)
yield n=1.0025×10−4. We thus conclude that the deviations for tempera-
tures e < 10−2 and small y are a consequence of channel width size and not
numerical viscosity. This can be seen further in Fig. 1c where the effects of
channel width on the viscosity are plotted as a function of the number of
iterations performed to reach the steady state Poiseuille flow for allocation
scheme #2 for y=0.6, e=5×10−3. For channel widths L=Ny=80, one
attains excellent agreement with the theoretical viscosity, albeit at the price
of the number of iterations.

From the point of view of numerical stability, we find there is an
upper bound on the internal energy e, which depends on the particular
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Fig. 1. A comparison of theoretical (from Chapman–Enskog) and simulation (from
Poiseuille flow) determinations for the viscosity transport coefficient for 2 different allocation
schemes: (a) allocation scheme a=−1, 0, 1, and (b) allocation scheme a=0, 1, 2. The open
dots are the lattice Boltzmann energy-dependent octagonal lattice simulation results for
channel width Ny=32, while the filled squares are for channel width Ny=80. The lines are
the theoretical results for different values of relaxation rates y. (c) plots the effect of channel
width Ny on the simulation viscosity as a function of the number of time iterations.

streaming allocation scheme chosen: for allocation scheme #1 e [ 0.25,
while for allocation scheme #2 e [ 0.67. However, it is critical to note that
there are no lower bounds on e. Thus one can achieve quite high Reynolds

Re=
V0L
n
=

V0L
e(y−0.5)

(41)
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simply by letting eQ 0, where V0 is a typical velocity and L is a typical
length. This should be contrasted with the results achieved from fixed octa-
gonal lattice vectors, Table I, where the lower bound on e is solidly bounded
away from zero. Finally, the linear stability of the energy-dependent
octagonal lattice (for either allocation scheme) places an upper bound on
the Mach number

Ma=
V0
cs

[ 0.5 (42)

where cs is the sound speed.

4.1. Scaling of Sound Speed with Temperature

Theoretically, the sound speed

cs=`2e (43)

To test the energy-dependent lattice concept we perform a series of jet simu-
lation at fixed Reynolds number Re=2,500 and Mach number Ma=0.5.
We vary the values of the temperature from e=0.5 to e=8×10−6 and
adjust the other parameters in (42) and (43) accordingly so that Re and Ma
remain invariant (see Table II).

The simulation grid chosen was 200×40, the nozzle width was L=5
and the nozzle protrusion in the horizontal direction was 14 lattice units.
The time output of the density profiles, tout, is chosen in the 4 runs so that
(2e)1/2×tout is the same in all the cases. From the density plots in
Fig. 2(a)–(d), one can ascertain the leading edge of the wave front for these
parameters and there is very good agreement between all 4 runs that indeed
cs=`2e holds. It should be noted that as e is chosen smaller and smaller,
the corresponding V0 must also decrease because of the stability limit on

Table II. Parameter e, V 0, y for 4 Different Runs (a)–(b) at the Same

Reynolds and Mach Numbers. The Time Output, tout, Is Choosen in

These Runs so that (2e) 1/2 tout=const.

(a) (b) (c) (d)

e 0.5 0.02 2×10−4 8×10−6

V0 0.5 0.1 0.01 0.002
y 0.502 0.51 0.6 1.0
tout 120 600 6,000 30,000

(2e)1/2 tout 120 120 120 120
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Fig. 2. Density profiles illustrating the scaling of the sound speed with temperature. The
energy-dependent lattice algorithm is tested to verify the theoretical scaling cs=`2e for
energy values (a) e=0.5, (b) e=0.02, (c) e=2×10−4, and (d) e=8×10−6. The parameters are
varied such that the four simulation are performed at the same Reynolds number and the
same Mach number. The output time for these simulations is so chosen that e1/2tout=const. so
that the wave front of the sound wave should be at the same spatial location for (a)–(d). The
simulations bear out this sound speed scaling with temperature.
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Fig. 3. Density profiles verifying the existence of an energy streaming factor Ce. For relaxa-
tion rates y=1 and temperature e=0.18 and after 400 time iterations, the density is shown
for 5 different values of Ce (see Table III). The theoretical location of the wave front is illus-
trated on these plots by the value of Dx. Again, one find excellent agreement between theory
and simulation.
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Table III. The Position of the Wave Front After

400 Iterations for Various Energy Scaling

Parameter Values Ce

Ce Dx=cs · t0=t0 `Ce2e

0.0625 60
0.125 84.85
0.25 120
0.5 169.7
1.0 240

the Mach number, (42). As a result, the number of lattice Boltzmann time
iterations must be increased to get to the same stage of evolution.

4.2. Propagation of Wave Front at t 0=400

Another feature of our energy-dependent lattice is the freedom of
introducing a streaming scaling factor Ce for the energy. Theoretically, the
sound speed now rescales to

cs=`Ce · 2e (44)

Equation (44) is tested for various choices of the energy streaming factor Ce
at y=1 and e=0.18. The density is shown in Fig. 3 at the same time
output t0=400 for 5 different values of Ce. The theoretical wavefront
position

Dx=cs · t0=t0 `Ce2e (45)

is tabulated in Table III and compared to the simulation results in
Fig. 3(a)–(e). Again, very good agreement is found between theory and
simulation.

Table IV. The Parameters to Test the Integrity

of Turbulence Simulations as eQ 0 for

Energy-Dependent Lattices

(a):`2e0 · t0=1200 (b):`2e1 · t1=1200

V0=0.002 V1=0.01
t0=300K t1=60 K
e0=8×10−6 e1=2×10−4

y0=1.0 y1=0.6
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4.3. Integrity of Energy-Dependent Lattices for Given

Reynolds Number and Mach Number

Finally, we consider a snapshot of jet turbulence between isothermal
walls for the two parameter sets of values given in Table IV.
For this choice of parameters, the Reynolds numbers are equal

(Re)0=
V0L

e0(y0−0.5)
=(Re)1=

V1L
e1(y1−0.5)

=2,500

as are the Mach numbers (the energy scaling factor here being unity,
Ce=1)

(Ma)0=(Ma)1=0.5

For a time snapshot with the equivalent physics in these two runs, we must
choose these times t0 and t1 such that

t0
t1
=1 e1
e0
21/2 (46)

Using a spatial grid of 200×40, the corresponding density profiles are
shown in Fig. 4A. The upper figure is for case (a) after 300 K iterations,
while the lower figure is for case (b) after 60 K iterations. The correspond-
ing temperature profiles are shown in Fig. 4B and the axial jet velocity in
Fig. 4C. Finally, we show the corresponding vorticity contours in Fig. 4D.
Excellent agreement is found in all cases.

5. SUMMARY AND CONCLUSION

Conventional thermal lattice Boltzmann simulations using the linear
BGK collision term are restricted to very narrow regions in (n, u, e)-space
due to numerical instabilities. One can attempt to increase the solution-
space domain by either concentrating on the form of Neq (e.g., entropic
approaches,...) or by considering higher order (discrete) symmetry lattices.
Our research has centered on using higher order symmetry lattices, both in
2D and 3D. In particular, in 2D, we have concentrated on the octagonal
lattice for the kinetic phase space velocity. Since these higher symmetry
lattices are no longer space-filling, one must introduce some scheme to
correlate the velocity lattice to the spatial grid. For octagonal lattices,
a second order interpolation scheme in the diagonal directions is appro-
priate for a square spatial grid. Moreover, the introduction of this second
order interpolation scheme does not introduce errors into the transport
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Fig. 4. Testing the integrity of energy-dependent octagonal lattices at Re=2500, Ma=0.5.
For the parameters chosen (see Table IV), the simulation results for (a) and (b) should present
the same physics: (A) density profile, (B) temperature profile, (C) axial velocity vx, and (D)
vorticity contours. Excellent agreement is found.
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Fig. 4. (Continued).

coefficients. While the octagonal lattice substantially increases the solution
domain in (n, u, e)-space, it is still not sufficient for certain application of interest
to us—in particular, in application to the tokamak plasma divertor region.

On applying the Gauss–Hermite quadrature method to thermal flows,
the associated velocity lattice now becomes temperature dependent. We
have thus introduced here an energy-dependent octagonal 2D velocity lattice.
Because the streaming operation in solving the discrete lattice Boltzmann
equation is now temperature-dependent, a non-trivial allocation scheme
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must be introduced that will enforce the appropriate moments. Because
the constraints to be enforced are quite complex, appropriate interpolation
schemes are extremely hard to find. To test the allocation scheme con-
sidered here, we have thus restricted our analysis to the 9-bit model,
a restricted model that does not solve the full non-linear energy equation.

One of the consequences of the energy-dependent octagonal lattice, as
opposed to conventional lattices (and even the octagonal lattice), is that
there is now no lower bound to the temperature: eQ 0. This allows for
quite high Reynolds number simulations by simply letting eQ 0. Even at
temperatures y=5×10−3 and small y, we do not see any effects of numeri-
cal viscosity being introduced by our allocation scheme. A drawback to
using very small e, however, is the increased number of time iterations
(since the Mach number cannot exceed 0.5 for a numerically stable code).

The energy-dependent lattice simulations of Poiseuille flow yielded the
viscosity dependence on temperature in excellent agreement with theory.
Moreover, our simulations showed excellent dependence of sound speed on
temperature as well as the integrity of scaling with different parameters at
the same Reynolds number and Mach number.

Because of the success of our 9-bit model as reported here, we are now
working on the full 17-bit model. The results of this will be reported
elsewhere.
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